SNPMiner Trials by Shray Alag


SNPMiner Trials: Clinical Trial Report


Report for Clinical Trial NCT03670186

Developed by Shray Alag, 2019.
SNP Clinical Trial Gene

Effects of BDNF Val66Met Polymorphism on the Efficacy of Aerobic Exercise in Sedentary, Healthy Males

This study investigates whether, after six weeks of exercise, a genetic variant (Val66Met) in the gene that makes a molecule (BDNF) important for brain health and function, influences the beneficial effects of a further session of exercise in sedentary, healthy males. The aim of this research is to determine whether not having this genetic variant (Val66Met) provides an advantage for achieving greater exercise-induced benefits. After six consecutive weeks of exercise (high-intensity interval training (HIIT), three times per week), the effects of a further session of exercise on brain activity are studied in healthy, sedentary males with and without the BDNF genetic variant. Further, whether the BDNF genetic variant impacts the effects of six weeks of aerobic exercise on blood BDNF levels, memory and cardiorespiratory fitness is examined. This data will help to understand whether genetic factors moderate the beneficial effects of exercise. Understanding what factors influence the effectiveness of exercise training programs is essential to individualize exercise programs and maximize their positive effects on the brain and during rehabilitation following brain injuries.

NCT03670186 Quality of Life

1 Interventions

Name: High-Intensity Interval Training (HIIT)

Description: Participants perform high-intensity interval training (HIIT) on a cycle ergometer. The HIIT protocol consists of a 3-minute warm-up at 50W, ten 60-second high-intensity cycling intervals interspersed with 90 seconds of active recovery at 30% of their peak power output and a 2-minute cool-down at 50W for a total of 17.5 minutes.

Type: Behavioral

V66V-HIIT V66M-HIIT


Primary Outcomes

Description: Corticospinal excitability as measured by single-pulse TMS-evoked responses in a hand and forearm muscles.

Measure: Corticospinal excitability

Time: 8 weeks

Description: Intracortical circuits as measured by paired-pulse TMS-evoked responses in a hand muscle

Measure: Intracortical circuits

Time: 8 weeks

Description: Spinal circuits as measured by spinal Hoffman reflexes from a forearm muscle

Measure: Spinal circuits

Time: 8 weeks

Description: Serum levels of BDNF as assessed by ELISA

Measure: Blood BDNF

Time: 8 weeks

Secondary Outcomes

Description: Serum levels of cathepsin B as assessed by ELISA

Measure: Cathepsin B

Time: 8 weeks

Description: Serum levels of IGF-1 as assessed by ELISA

Measure: IGF-1

Time: 8 weeks

Description: Serum levels of VEGF as assessed by ELISA

Measure: VEGF

Time: 8 weeks

Description: Serum levels of osteocalcin as assessed by ELISA

Measure: Osteocalcin

Time: 8 weeks

Description: Working memory as assessed by the Automated Operation Span (OSPAN) Task

Measure: Working memory

Time: 8 weeks

Description: Cardiorespiratory fitness as assessed by VO2 peak test

Measure: Cardiorespiratory fitness

Time: 8 weeks

Purpose: Basic Science

Allocation: Non-Randomized

Parallel Assignment


There is one SNP

SNPs


1 V66M

Effects of BDNF Val66Met Polymorphism on the Efficacy of Aerobic Exercise in Sedentary, Healthy Males. --- Val66Met ---

Effects of Genetic Variation on the Efficacy of Aerobic Exercise This study investigates whether, after six weeks of exercise, a genetic variant (Val66Met) in the gene that makes a molecule (BDNF) important for brain health and function, influences the beneficial effects of a further session of exercise in sedentary, healthy males. --- Val66Met ---

The aim of this research is to determine whether not having this genetic variant (Val66Met) provides an advantage for achieving greater exercise-induced benefits. --- Val66Met ---

The objective of this research is to determine whether after six consecutive weeks of high-intensity interval training (HIIT), three times per week, BDNF Val66Met polymorphism impacts the effects of a further HIIT session on corticospinal excitability as well as intracortical and spinal circuitry. --- Val66Met ---

Additionally, this study aims to assess whether BDNF Val66Met polymorphism moderates the effects of six consecutive weeks of HIIT on BDNF, working memory and cardiorespiratory fitness levels. --- Val66Met ---



HPO Nodes